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In this paper we derive some general conditions on stable walks in Z a, under 
which the central limit theorem holds for their normalized intersection local 
time. In particular, we prove that the process given by the normalized inter- 
section local time of the simple random walk in Z d, with d>_-3, is weakly 
convergent to the standard Brownian motion. 
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1. INTRODUCTION 

Let ((~, i~> 1) be independent, identically distributed random variables in 
Z d on a probability space (g2, ~ ,  P). Let {X.}.~>0 be the random walk in 
Z d defined by 

i ~ l  

and {Px} be the probability law of {X,,},,>~o. As in ref. 6, we introduce the 
following two assumptions on the random walk {X,},~>o. Let fl~ (0, 2] be 
a given constant. 

A s s u m p t i o n  A1. There exists a function b(n) of regular variation 
of index lift such that 

b - l ( n )  Xn ca), Ul, n--* oo 
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where U, is a nondegenerate stable random variable of index fl in R d, and 
tat, means that the convergence holds in distribution. 

Assumption Az. With P0-probability one, {-t',,},/>o does not stay 
on a proper subgroup of Z d. 

As explained in ref. 7, one may assume that the function b is 
continuous and monotonically increasing from R+ onto R§ and that 
b(O) =0. 

Let {B,},~o be the Brownian motion in R a on a probability space 
(~, ~-,/a), and Bo=O. Let 

~(x ,A)=IIAgx(B,-Bs)dtds ,  VAcR2+ 

where 6x is the g-function. There have been many results about the 
existence of o~(x,A) (e.g., see ref. 4 and references therein). In general, 
0~(x, A) is called the intersection local time of {B,} on the set A. 

Let 

l(n) = ~. g(X~, Xj) 
i = 1  j = i + l  

Corresponding to the definition of a(x, A), the random variable I(n) is 
called the intersection local time of the random walk {X,},,~0 (or briefly, 
the discrete intersection local time) in this paper. 

For d =  2, there have been many investigations about the renormaliza- 
tion for the intersection local time of Brownian motion and random walks 
(e.g., see refs. 4, 6, 8, and 10). For d =  3, Yor (14) obtained a renormalization 
result for the intersection local time of Brownian motion by means of some 
tools in stochastic analysis and some representations for the intersection 
local time ~(x, A). (9"13) More precisely, Yor proved that ~14> 

(B ,  (log e-l)-~/2 [2ha(0, T~) - te-l/2E IB~1-1 ], t >~ 0) 

la) (B,, 21/2/1,, t>~0), e--+0 (1.1) 

where {fl,},~o is a standard Brownian motion which is independent of 
{ B,}, and 

T~= {(x,y): O<~x<.y-e;x,y<~t} 

If {X,} is the simple random walk in Z 3, one can also obtain a renor- 
malization result for I(n) by using Yor's result as above [i.e., (1.1)] and 
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some estimate (e.g., ref. 1) on the convergence rate of the invariance 
principle for the intersection local time (see ref. 1). However, it is difficult 
to get a renormalization result for the intersection local time of some stable 
random walks and higher-dimensional simple random walks by using the 
above approach. 

The main purpose of this paper is to derive a renormalization result 
for the intersection local time of random walks in Z d by using another 
approach. This approach is based on Le Gall and Rosen, (7) where many 
limit theorems are obtained for the range of stable random walks in Z d. In 
Section 2, we first derive some general conditions on the random walk 
{X,} such that the normalized intersection local time can converge 
weakly to the standard normal distribution under these conditions (see 
Theorem 2.3 below). In Section 3, we check that the simple random walk 
in Z d with d>~ 3 satisfies the general conditions derived in Section 2, and 
prove an analogous result to (1.1) for the normalized intersection local 
time of the simple random walk in Z d with d~> 3. 

At the end of this section, we remark that there is a connection 
between the construction of a polymer measure and the renormalization 
result for the intersection local time. In fact, one can use the renormaliza- 
tion result for the intersection local time of Brownian motion (or simple 
random walk) to construct the polymer measure in two dimen- 
sions. 11'6'1~ For d =  3, (1.1) (or Theorem 3.4 below) can help to under- 
stand the renormalization result for the normalization constant given in the 
definition of the polymer measure (see ref. 1, Theorem 1.1, ref. 3, w or 
ref. 12). We hope our results (see Theorem 3.4 below) can also help to 
understand the renormalization result for the normalization constant given 
in the definition of the Domb-Joyce  model for d/> 4 (for the definition, see 
ref. 5). 

2. CENTRAL L I M I T  T H E O R E M  

The main aim of this section is to derive a general condition under 
which the central limit theorem holds for the normalized intersection local 
time of random walks in Z d. In this section we continue to use the notation 
introduced in Section 1, and assume that all random walks here satisfy the 
assumptions A~ and A 2. Let 

P, , ( x ,  y )  = P,,(.Y,~ = y )  = P o ( X , ,  = x - y )  

For convenience, we first recall some estimates on the transition proba- 
bility P , , ( x , y )  (see ref. 7, Proposition 2.4). Let r be the period of {X,,}. 
Then there is a constant C1 s (0, oo) such that: 
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(i) P,,(0, 0) = 0 if n is not a multiple of z. 

(ii) lim . . . .  ba(m) P.~(O, 0) = rp, (0) .  

(iii) P,,(O, x) <~ C,b(n) -a. 

Let {X,(n)},,>~o and {X2(n)},,~>o be independent random walks on 
(t2, ~-, P) with the same distribution as {X,,} introduced in Section 1, and 
X,(0) = X2(0) = 0. Let 

f l (n)= ~ ~ P(X,(i)=X2(j) ) 
i = 0  j = 0  

Then we have the following result. 

I . emma  2.1. There is a constant C2e(0, ~ )  such that 

E 3(X~(i), XI(j) ) <~ C2fl4(n), Vn>~ 1 
\ i = 0  j = 0  

where E is the expectation with respect to P. 
Before proving this lemma, let us first recall an elementary property of 

b(n) [see ref. 7, (2.a)]: 

(iv) The following holds for any given N~ (0, oo): 

b(Nn) <~ O(b(n)), Vn >>. 1 

Proof of Lernma 2.1. For convenience, in the following proof we 
assume that b(n) is positive for any n >/0 It is easy to show that 

E 6(X~(i), X2(j)) 
i j = O  

( 4 ) 
=4} E ~, ~ I-I a(Xl(ik), X=(jk)) 

O~<ll-<...~i4<~n O~Jl,..,,j4<~t! k = l  

=4!  ~ ~ E(Pi,(O, Xz(j,)) Pi._,,(O, X z ( j z ) -  X2(jl)) 
0 ~ i l ~  < - . "  ~i4~n O~Jl,.,.,j4~n 

X Pi,_i2(O, X'2(J3 ) -- X2(J2)) Pi4_i,(O, Xx(J4 ) -- Xx(J3)) ) 

Let {z,(j), ~2(J), r3(J), r4(j)} = {j,, j=, J3, J4} satisfy 

l:l(j) ~< z=(j) ~< ~3(J) ~ ~4(J) 
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Let 

and 

fk(x) = P,k+,r O' X), k = I, 2, 3 

gk(x)=Pik+,_i~(O,x), k = 1 , 2 , 3  

3 

= E ] - I  ( f i ( x i ) g i ( o i ( x ) ) )  
XhX2,x3 e Z d i= I 

where ve(x)=Z~=lauxj,  a i j e { - 1 ,  O, 1}, i , j = 1 , 2 , 3 ,  and the matrix 
(aq)lai,]<~3 is not singular. Note that X2(z1(j)) is independent of 
{XE(jt)-XE(Jk), 1 <~1, k~<4}. By property (iii) we can show that 

E J(XI(i), Xa(j)) 
i j = 0  

~< 4! ~ ~ max Pit-  ~,(j)(O, z) 
~ Z  d 

0 ~ i 1 ~  "'" ~ i 4 ~ n  O<~jl,,,,,j4<~n 

<~ ~ ~. O(b-d(il + rl(j)))  
0 ( i t  ~< " "  ~ i4~n  0~<l ' l ( j )~  " .  ~<r4(j)~?l 

By property (ii) and the monotonicity property of the function b we can 
show that 

fl(n) = 0 b-d(i + j) 
i j = 0  

Thus, to prove the desired result, we only need to show that for any given 
(ao.) with the properties mentioned as above 

<~ O( 1 ) 1-[ b - d ( i  k + t  --  ik + Z++ l (J)  --  Z I ( j ) )  
m =  I I I f m  

3 m + 2  

+ 1-I I] b--a(ik+l--ik+zl+2(J)--~t+l(J)) 
k = l  I=m 

3 m + 2  / 

+ I~ I-I b-a(ik+l--ik+z,+3(J)+z~+z(J)) 
k =  l I=m 

where Z l + l ( j ) - - z l ( j ) = r k + l ( j ) - - r k ( j )  if l = 3 m + k + l  for some 
ke{1 ,2 ,3} .  

To save space, we will prove the above estimate only for the following 
case: 

U I ( X ) =  X I  + X2 + X 3 ,  [)2(X) = X2 + X 3 ,  V 3 ( X )  "-~" X I  + X 3 
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In fact, by a similar argument  one can also prove the desired estimate for 
the other cases. In the present case, we have for z 2 ( J ) -  rl(J)~< i2 - i~"  

~ < ~ O ( b - d ( i = - - i l ) )  ~ P~2(jl-~,tj)(O, x l )  ~, P,4{j)-.,(j)(O, x3) 
xt ~ z a x3 ~ Z a 

x Pi,_i3(O, x l  + x3) ~. P,3U~_~2u~(O, xz)  P~3-~:(O, x 2 + x3) 
X2 ~ Z ff 

<~ O ( b - d ( i  2 -- i~) b-d( r3 ( j )  -- z2(j) + i3 -- i2) b - - d ( z 4 ( j )  - -  z~(j) + i 4 -- i3)) 

<~ O ( b - a ( r 2 ( j )  - r l ( j )  + i2 - il) b - a ( r 3 ( j )  - r2(j)  + i3 - i2) 

X b - d ( ' t ' 4 ( j )  - -  za(j)  + i4 -- ix)) 

by properties (iii) and (iv). Note  that 

P'~ , (J ) -T2u) (O'x2)  E Pi=-i,(O, x l  + xa) Pi4-i,{O, x l )  
x2~z  d x~ ~ z  a 

~ O ( b ( r 3 ( j ) - z 2 ( j ) )  if r 3 ( j ) - r 2 ( j ) > > - i 4 - i 3  

<~ ( O ( b ( i 4  - -  i 3 ) )  if i 4 -  i3 >/r3(j)  - -  " c2 ( j )  

By property (iv) again we know that the right-hand sides of  the above 
estimate are less than or  equal to 

O ( b - d ( z 3 ( j )  -- r2(j) + i4 -- i3)) 

Thus, we have for z2( j )  -- r l ( j )  > i 2 - i I 

<<. O ( b - d ( r 2 ( j )  -- r l ( j )  + i2 -- il)) ~ P~(j)_ ~2r Xz) 
x 2 E ~  d 

x ~ P~,(j~_~3~j~(O, x3) P~3_i2(0, xz  + x3) 
x3  

x ~, Pi2 + ,L( O, x l + x2) Pi4 - i~(O, X l ) 
x l  

<~ O(b -a ( za ( J )  - z l (J )  + iz - i l)  b -a ( za (J )  - r3(J) + i3 - iz) 

x b-d('t '3(j) - -  T 2 ( j )  "1- i 4 - -  i 3 ) )  I 

This proves the desired result. 
Let 

~(n) = f l -2 (n )  Eo(l (n  ) - EoI (n ) )  1 

where Ex is the expectation with respect to P~. 
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L e m m a 2 . 2 .  Assume that the sequence {0C-1/2(2"+1)}.>_0 is 
bounded. If there are sequences {~(n)}.~>~ and {/7(n)}.~>, and constants 
No < ~ and e e (0, 1) such that 

2az(2 ")/~4(2") 
~ < l - e ,  Vn~>0 (2.1) 

072(2n + ~ ) ]~4(2 " + '  ) 

and 

s u p ( a ( n )  oT(n) fl(n) fl(n)) 
v v v ~< No 

,, ~>, \oT.(n) ~ - ~  = - -  p(.) P-(-ml 

then there is a constant C 3 ~ (0, c~) satisfying 

E o 1I(2")-EoI(2")14<~ C3~Z(2")f14(2"), Vn>~ 1 

In addition, if 

~. a1/2(2 k) fl(2 k) ~< O( . rain Ox'/'(k) fl(k))), 
2 ~<k-<2n+l 

k = l  

then we have 

E 0 II(n)-EoI(n)[4<~ C30c2(n)fl4(n), Vn>~ 1 

under the same conditions as before [i.e. (2.1) and (2.2)]. 

Proof. The following idea is basically from the 
Theorem 4.5. For  k >/0, let 

( k +  I)n [ k +  IJn 

Jk( n)= Z Z 6(Xi, Xj) 
i = k n + l  j = i + l  

and 

Then, 

Note that 

Vn>~ 1 

Rk(n) = Jk(2") -- EoJk(2") 

Ro(n + 1 ) = Ro(n ) + R1(n) 
2 n 2 n + I 

"Jv E 2 ( O ( X i '  X j )  - -  E o 6 ( . ~ i ,  X j ) )  
i = l  j = 2 n +  i 

proof 

go IRo(n) + Rl(n)l 4 ~< 2Eo IRo(n)l 4 + C4j~4(2 n) 0f.2(2 n) 

(2.2) 

(2.3) 

of ref. 7, 
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for some constant Co~(0, c~). By Lemma2.1,  there is a constant 
C5 z (0, o0) such that 

(Eo IRo(n + 1)14) 1/4 ~< (Eo IRo(n) + R,(n)[4) TM 

+ Eo ~ [6(x,, X:)-Eo6(X,, x+)] 
i 1 j = 2 n +  1 

~< [2Eo ]Ro(n)l 4 + C4/~4(2 ") ~2(2")] ,/4 + C5p(2") 

Hence, we have for some constants C~ and C~ e (0, oo) 

[~-2(2 .+  t) ~-4(2 .  + 1) Eo IRo(n + 1)l 4 ] ,/4 

( 2~2(2") fl4(2 " ) 
~-2(2") ~-4(2")Eo ]Ro(n)14 + C'4) ]/4 

~< \o~2(2, + t) ]~4(2n + I) 

+ C,5o~-]/2(2n+ 1) 

By our hypothesis on {oc(2")} and (2.1) we can show that there is a 
constant C6~(0, oo) such that 

[ ~ - 2 ( 2 " +  1 ) ~ - 4 ( 2 n +  1) Eo [Ro(n + 1)14] 1/4 

~< [(1 - e )  0~-z(2 ")/~-4(2n) Eo IRo(n)14 + C6] 1/4 

Thus, by induction one can easily show that 

E 0 IRo(n + 1)14~< CT~2(2n+])fla(2n+l), Vn>~ 1 

for some constant C7~ (0, ~ ) .  
Now we assume (2.3) holds. For any k =  1 ..... 2 " - 1 ,  there are 

lo ..... l,,_ ] e { 0, 1 } such that 
n -- 1 

k=  y" li 2~ 
i = 0  

Then, from the argument given before we can see that 

[Eo 11(2" + k )  - EoI(2" + k)14] TM 

~< O(ct'/2(2 ") fl(2")) + lEo II(k) -EoI(k) l  4 ] i/4 

By induction we can show that 

n - - ]  

lEo II(k) -EoI(k)[  4] a/4 ~< ~ liO(oj/2(2 i) fl(U)) 
i = 0  
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In fact by our  hypothesis (2.3) we know that 

[Eo(I(2" + k )  - Eo(2" -k-k))  4 ] I]4 ~ O(ott/2(2n + k )  fl(2 n + k ) )  

and this implies the desired result, completing the proof  of Lemma 2.2. | 

The main result in this section is as follows. 

Theorem 2.3.  Assume that (2.1) and (2.2) are satisfied, and the 
sequence {o~-t/2(2"+')},,>~o is bounded. If there is a sequence {m.}.~>o 
such that m. e [ 1, n ], Vn >/1, l im. _ o~ m.  = ~ ,  and 

lim E7'21 21/2fl( 2" - t )  
. . . . .  fl(2 . . . . .  ) 2m,/2ctl/2(2 . . . .  ) = 0 (2.4) 

then the following holds: 

I (2" ) -EoI (2" )  ~a) N(O, 1), n ~  oo 
fl(2 . . . .  ) 2,-,/20~1/2(2 . . . .  ) 

where N(0, 1) is a random variable with the standard normal  distribution. 

Proof. Let 

T(l, k, n) = [ ( 2 k -  2) 2 " - t ,  ( 2 k -  1)2 " - t ]  x [(2k - 1 ) 2 " - t +  1, (2k)2 " -z ]  

Zlr.(n) = 0 2'-' 

and 

U T( l , k ,n )  
I = 1  k = l  

J(m, n) = ~,, O(Xi, Xfl 
( i , j )  G z l m ( n )  

Then, we have 

where 

2ran - -  1 

I(2") = Z J,-(2 ...... ) + J(m,,, n) 
i = 0  

n - -  m n  Jo(2 . . . .  ) ..... J2 . . . .  L(2 ) 

were defined in the proof  of Lemrna 2.2. It is clear that the random 
variables 

n - -  m n  Jo(2 . . . .  ) ..... J2m._ 1(2 ) 

822/80/3-4-8 
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are independent identically distributed, and there is a constant Cs ~ (0, oo) 
such that 

(Eo [J(m,,, n)-EoJ(m,,, n)12) I/2 

~< 2"-1)/2 Var 6(X~, Xj) 
I=1 OJ)eT(l', " ,1, n)  

~< E 2(t-1)/2 E --~o E 6(Xl(i)' X2(j)) 
I=1 \ i  j = 0  

mn 

C s ~ .  2t/2fl(2 n - l )  (2.5) 
I = 1  

by Lemma2.1. Thus, the desired result follows from the following 
convergence: 

~..~ 2 r n n - I  (J~(2 . . . .  )-EoJi(2 . . . .  )) (a) N(O, 1) (2.6) i ~ O  
//(2 . . . .  ) 2m./2a 1/2(2 . . . .  ) 

We now prove (2.6). Note that [we denote Eo(J-EoJ) 2 by Vat(J) ]  

/ 2 r a n -  I 1 2  
Eo ~ 2 [Jt(2 . . . .  )-EoJi(2 . . . .  )] 

\ i=0 
2ran -- 1 

- ~ Var(Jg(2 . . . .  )) 
i=O 

= 2""//2(2 . . . .  ) a(2 . . . .  ) 

Thus, to prove (2.6) we only need to prove that the Lindeberg condition 
is satisfied, (2) i.e. 

lim f l  2mn-I -- 

n - - ~  i~0 f 'x '  >-~2mn/2p(2 . . . .  )a'/2( 2 . . . . .  ) x2dFi(x)] 

/ [  2m"//2(2"--"") Ct(2 . . . .  ) ] - -1}=0,  Ve>0 (2.7) 

where Fi(x) is the distribution function of Ji(2 . . . . .  ) -  EoJi(2 . . . .  ). Indeed, 
by Lernma 2.2 we know that 

2ran -- I 

Eo l J,(2 . . . .  ) - EoJ~(2 . . . .  )14 
i=0 

~< c32m,,ot2(2 . . . .  ) fl4(2 . . . .  ) (2.8) 
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Using this, we can see that Lyapunov's condition is satisfied with 8 = 2 (see 
ref. 2, 27.16). Therefore the Lindeberg condition (2.7) is satisfied (see ref. 2, 
p. 312). Thus, (2.6) is proved, which completes the proof of Theorem 2.3. 

3. W I E N E R  PROCESS B E H A V I O R  

In Section 2 we derived a general condition under which the central 
limit theorem holds for the normalized intersection local time of some 
lattice random walks. The main aim of this section is to show that some 
random walks in Z a satisfy all assumptions given in Sections 1 and 2 if 
d~>3. Since there is no nice estimate [as in (a)-(c) below] for the 
transition probabilities of a general stable random walk, we are unable to 
get a desirable estimate for the variance of the random variable I(n) [i.e., 
Var(I(n))] as in Lemma 3.1 below. Nevertheless, our approach given in the 
proof of Theorem 3.4 below is in principle suitable for some stable random 
walks with some symmetric properties. For simplicity, in this section we 
restrict our attention to the case of simple random walks. We always 
assume that {1",} is the simple random walk in Z a. We first recall some 
results on the transition probability of the simple random walk in Z a. Let 

2 \2--~n,/ exp \ 2n ;2 

Then we have the following properties. 

(a) There is a constant C,~(0 ,  ~ )  such that (see ref. 5, 
Theorem 1.2.1 ) 

if P,,(O, x)  > O. 

IP.(0, x)-/~.(x)l ~< Gn -{a+2)/2 

IP.(0, x ) -  P.(x)l ~< C, Ix1-2n-~'/= 

(b) There is a constant C2E(0, oo) for any given ct~(1/2,2/3) such 
that (see ref. 5, Proposition 1.2.5) 

Ie.(0, x)-P.(x) l  < Gn3=-LP.(x) 

if Ixl ~<n = and P, (O ,x )>O.  

(c) There is a constant C3e(0, oo) such that for Ixl > n  [see ref. i, 
~4(i)] 

P.(O, x) <~ C3P~a(x) 
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L e m m a  3.1.  (i) For  d = 3 ,  the following holds: 

Var(I(n))  = O(n log n) 

(ii) For  d>~4, there is a constant  kae(O, oo) such that  

Var(I(n))  
lim = kd 

n ~ o o  n 

Proof. (i) The following p roof  is adapted  from the proof  of  ref. 4, 
Proposi t ion 6.4.1. Let 

q( il, Jl ; i2, J2) = Po( X( il) = X( j l ) ,  X(i2) = X(j2)) - p j , - i ,  Ph-~2 

where p ,  = P,,(0, 0). Let 

L1 = ~, q(il, Jl; i2, J2) 
l <~il~i2<j2<~jl <~n 

L 2  = E q(i], j ] ;  i2, J 2 )  

] ~ i  I ~i2<~j I <j2  ~< ~'I 

It  is clear that  

L t ~< Var(I(n))  ~ L1 + L2 

As in the proof  of  ref. 5, Proposi t ion 6.4.1, by using the Markov  proper ty  
and proper ty  (a), one can show that  for some constants  C4, C5 e (0, oo) 

L I  = E P j 2 - i 2 ( P j , - q - ( j 2 - i 2 ) - - P j , - i , )  
I <~i I <~i2<J2<~Jl <~n 

C4 E ( ( j 2 - i 2 ) - 3 / 2 [ 1  "-F 0 ( ( j 2 - - i 2 ) - I ) ]  
I ~ i  I ~ i2<J2~jl ~n 

x [ (Jx -- il -- (J2 -- i2) + 1 ] -3/2 [ 1 + O((jl  -- il -- (J2 -- i2) + 1 ) - 1 ) ]  

- -  (J l  - -  i l ) - 3 / 2  [ 1 + O ( ( j ,  - -  i l ) - 1 ) ] )  

<~ C5 E ( ( j 2 - - i z ) - l / 2 ( j l - - i l ) - l [ j l - - i l - - ( j 2 - - i 2 ) +  l ] - 3 / 2  
1 <~ i I <~i2<J2~Jl <~n 

+ (J2 -- i2)-3/2 [ (Jl -- il -- (J2 -- i2) + 1 )-5/2 + (Jl - -  i l ) - - 5 / 2 ]  ) 

<<. O(n log n) 

In fact, one can also get 

L1 >t O(n log n) 



Lattice Random Walk 615 

We now consider L2. Assume i I ~< i2 ~<Jl <J2.  By property (a) we can show 
that 

P.(0,  x) ~</5.(0)[ 1 + O ( n - ' ) ]  

Thus, if J 2 - J l  > / i 2 -  i] and PJ2-J, > 0, 

P o ( X ( i l )  = X ( j l ) ,  X(i2) = X(j2)) 

= P o ( X ( j l  --  i]) = O, X ( i  2 - i t )  = X ( j  2 - i l )  ) 

= Eo(I{xc j , -~ , )  =0} P j 2 - j , ( X ( J 1  - il ), X( i2  - i I ))) 

~< Pj ,_j , (0)  pit_61-1 + O((j2 - j , ) - l ) l  

and, if j2 - J l  < i2 - il and Pi2-i, > 0, 

Po(X(il) = X(j~), X(i2) = X(j2)) 

= e o ( X ( j 2  - i2) = 0, X ( j 2  - i l )  = X ( j 2  - - J l ) )  

~</~"2- ", (0) PJ2- "2[ 1 + O((i2 - il + 1 ) -1)]  

Therefore, we have for some constants C6, C 7 e  (0,  00) 

L 2 ~  E C6{I{j2-Jl>~i2-il} 
1 ~ i  I <~i2<~Jl <j2~<n 

x (Jr -- il + 1 ) - 3 / 2 [ ( J 2  - - J l )  -3/2 -- (J2 -- i2) -3/2 + O((j2 - - j l ) -5 /2)  "] 

+ II&-Jt <~2-6}(J2 -- i2) -3/2 [ (i2 -- il + 1 ) -3/2 

--  (Jl --  i l ) - 3 / 2  + O( ( j2  --  i2 + 1 ) - 5 / 2 ) ) ]  } 

n - - i  I n - - i l - - i  2 n - - i l - - i 2 - - J l  

i1=0 /2=0 Jl=O ./'2=1 

x (J] + i2 + 1 ) - 3 / 2 [ J 2 3 / 2 ( J 2 + J l ) - l J l  +j~5/2]  

+ I{i2> j2}(j2 + j l  + 1)-3/2[(i2 + 1 ) - 3 / 2 ( j  t + i2)--l ( j l  + 1) 

+ (i2 + 1)-~/2] } 

~< O(n log n) 

Combining the above estimates, we can get the desired result. 
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(ii) Without loss of generality, we may prove the desired result only 
for d = 4. Let 

( (  A I =  Var I ( n m ) -  ~" Ji(n) 
iffi0 

A 2 (Var("m+kj(';m)l~m~i 1 

where J~(n) was defined in the proof of Lemma 2.2. Then, we have for any 
given n, m >/1 and k ~< n - 1 

Var(I(nm + k ) ) 1/2 <~ m I/z Var(/(n)) m + A~ + A2 

As in the proof of Lemma 2.1, we can show that 

A2 ~< Var(/(k)),/2 + O(log(nm)) 

By a similar argument as in (i) we can show that 

Var(I(n)) = O(n) 

Thus, we have for k ~< n -  1 

A 2 <~ O(I(n))  + O(log(nm)) 

We now consider A,. For simplicity, we only consider a special case: 
n = 2% m = 2 " .  In this case, 

A1 = J (n l ,  nl + ml )  

where J( . , .  ) was defined in the proof of Theorem 2.3. By induction we 
have 

[EoJ2(n , ,  nl + m l ) ]  la ~< [EoJ2(nl  -- 1, nl + m l ) ]  1/2 

/2,~-1 ( \ \ , / 2  
"4- E E O(Xi, Xj))) ~k= Var 

1 ( i , j )  ~ T ( n  I , k , n l  + m I ) 

[ EoJ2(nx - 1, n I + m l ) ]  i/2+ 0 ( 2 " ' -  1)/2rnl) 

<<. O(mz2 ",/2) 

In other words, we have 

A1 <~ O(n 1/2 logm)  
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Therefore, we have for n, m >i 1 and k ~< n - 1 

Var( I (nm + k)) I/2 ~< m 1/2 Var(I(n))i/2 + O(nl/2 log m) + O(log(nm) ) 

which implies that  

Var(I(nm + k)) U2 <~ Var(I(n))  ~/2 f l og  m'~ ( log(nm)~ 
(nm)l/2 n,/2 + 0 \ ml/2 j + 0 \ (rim)l~ 2 ) 

Using this, we can show that  

Var( I (m))  1/2 ~< lim inf Var(I(n))  i/2 
lim,._~osup m U  2 n -  ~o n 1/2 

Hence, there is a constant  k 4 ~ (0, oo) such that  

Var(I(n))  
lim nl/2 = k4 

n~ oo 

which proves the desired result. 

I . e m m a  3.2 .  Let us write X , =  ( X,,..., X d) ~ Z d, Vn >~ O. Then the 
following holds for any k = 1 ..... d: 

Eo(X~ . ( l (n)  - E J ( n )  ) ) _ 0 
nl/2o~1/2(n) fl(n) 

Proof. Note  that  EoX~,=0 ,  and that  for 1 <~i<j<<.n 

Eo(6(X,, X]) I{x. =x}) 

= ~ P o ( X , = y )  P o ( X ] - i = O , X , , - , = x - Y )  
yEZ d 

= ~ P o ( X i = y ) e o ( X j _ , = O ) e o ( X . _ j = x - y )  
y~Z d 

= p j _ i ' P o ( X n _ j + i = X )  

Then, we have 

Eo( Xk.( I( n ) - EoI( n ) ) ) 

= ~ ~ P j - i E o X k n - j + i - - E o X k g o I ( n )  
i ~ l  j = i + l  

= 0  

which proves the desired result. 
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Remark. Here we have used the symmetry  of the simple r andom 
walk {Xn}. We do not know how to extend the conclusion of Lemma  3.2 
to a general r a n d o m  walk. 

For  any given n t> I, we let {(rh(k, n) ..... r/d+l(k, n)} l~k~<n be inde- 
pendent,  identically distributed r andom vectors on the probabil i ty space 
(t2, ~ ' ,  P), and assume limn _ ~o a~(n) = oo, where 

a/2(n) = Var ( ~  r/i(k,n)), / = l  ..... d + l  
k = l  

N o t e .  Here we do not  assume that  the r andom variables 
r/l(k, n),..., r/d+ ~(k, n) are independent for any given k ~< n and n i> 1. 

L e m m a  3.3.  Assume that  for i =  1 ..... d +  1 

lim ~ (q,(k, n)-Er/ , (k ,  n))4/t74(n)=0 (3.1) 
n ~ o o  k =  I 

It  the following holds for any 1 ~< i < j ~< d 

g n n 
lim (~- 'k=]r/ i(k 'n) 'Za='r/J(k 'n))-O (3.2) 

o ' i ( n ) .  O'j (/ ' /)  

then we have 

( Z ~ f l  (r/ ,(k,n)--Erh(k,n)) Z"kffi, (r/a+](k,n)--r/d+,(k,n))) 
a,(n) ..... ad+l(n ) 

(a)) Na+ i(0, I) 

as n--* oo, where Na+ ](0, l ) is a r andom vector  in R a+] with the s tandard 
normal  distribution. 

Proof. For  any given t,,...) td+ l ~ RI, we let 

d + l  

r/(k, n) = ~, tir/i(k, n)/ai(n) 
i = l  

By (3.1) we know that  the Lyapunov  condition (2) is satisfied, i.e., 

lira E ~. Ir/(k,n)-Er/(k,n)14=O 
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which implies that  the Lindeberg condit ion is satisfied. (2) By (3.2) we can 
show that  

, l i m E  (q (k ,n ) -Er l (k ,n ) )  = ~ t~ 
k = l  i = 1  

Thus, we have 

~"k=x ( q ( k , n ) - E q ( k , n ) )  td) 
Z a + ,  ' t~ , N(0, 1), n--* 

by the Lindeberg condit ion for the central limit theorem/z)  Let 

dp,,(tl,. . . ,G+l)=Eexp i ~ tt[at(n)] -I  [ q t ( k , n ) - E r h ( k , n ) ]  
I = 1  k = l  

Then 

(" ) ~b.(t t ..... td+l) = E e x p  i ~. [q(k, n) -Er l (k ,  n)]  
k = l  

- - * e x p ( -  1 2 ~ ( t l + . - .  + t z+x ) ) ,  n - ~ o o  

In other words, r  converges to the characteristic function of Nd+ 1(0, 1) as 
n---, ~ .  F r o m  this we get the desired result. | 

To  state the next theorem, we first introduce some notations. For  each 
n/> 1, we construct  a process X(")~ Co(J0, ~)--- ,  R a) as follows. Let 

X(") (2-" i )  = 2 -"/2Xi, i = O, 1, 2 .... 

and X I") be linear on [ ( i -  1 )2 -" ,  i 2 - " ]  for i =  1, 2 ..... Let 

[tn] [tn] 

I(t, n)= E E 6(X,, Xj) 
i = 1  j = i + l  

T h e o r e m  3.4.  (i) For  d = 3 ,  there are a sequence {u(n)} and a 
constant M e [ 1, ~ )  such that  

M - l  <~ u(n) <~ M, Vn >~ l 
and 

i ( t , n ) _ E o i ( t , n  ) ) 
]((")( t), nl/2(log n)l/2 u(n) ' t >10 

td) (B,,flt ,  t>>.O), n ~ o o  

where (B,, fl,, t/> 0) is the s tandard Brownian mot ion  in R 4. 

(3.3) 
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(ii) 

X(,)(t) I(t, n) --Eo1(t, n) 
n ~/2 kd 

~'~, (B,, ,O,, t >10), 

Albeverio and Zhou 

For d>~4, there is a constant kd~ (0, 00) such that 

, t~>0)  

y/----~ oo 

where (B,, fl,, t >1 O) is the standard Brownian motion in R d+ 1. 

Note .  In fact one can show that the sequence {u(n)} in Theorem 
3.4(i) can be chosen to be u(n)= 2t/2(2tt)-l, Vn/> 1. 

Proof. (i) By Lemma 3.1 and a sample calculation we can show that 

fl(n) = O(n]/2), 0~(n) = O(log n) 

Let 8(n) =log  n, fl(n) = n  1/2, and 

u(n) = 8(n)-u2/~(n) - ' , t  U2(n) fl(n) 

Then we have 

u(n) =O(1), n>~l 

It is easy to show that the simple random walk in Z 3 satisfies all assump- 
tions given in Lemma 2.2. For simplicity, we only prove that the desired 
result is true if the sequence {n} is replaced by the sequence {2", n/> 1}. In 
order words, we prove that 

where 

(Xt2.)tt~ (t, 2 ) t~>0) 
\ ' "2"/2(Iog 2") 1/2 u(2")' 

(a) (B,, fit, t >~ 0), n --* oo (3.4) 

I(t, 2")=I( t ,  2")--EoI(t,  2") 

In fact, the idea to prove (3.3) is the same as that to prove (3.4), it is just 
that for (3.3) more notations have to be introduced. 

First, we prove that for any fixed t > 0 

X'(2")(t)' 2"/2(1og 2") 1/2 U(2")J (Bt, fit), n ~ m (3.5) 
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Let m, = log 2 n 1/4, Vn t> 1. Then (2.4) holds with this choice. Let 

I t2  toni - -  l 

J(t,  n ) =  2 [S;(2 . . . .  ) - E o J ; ( 2  . . . .  1] 
i = 0  

From the proof  of Theorem 2.3 we see that (3.5) follows from 

( x-[,2",,]-1~= tn, J ( t , n )  ~ , a ) ( B t ,  flt), 
2 ""/2 ' fl(2 . . . .  ) 2m"/zod/2(2 . . . .  )J 

where 

{ i +  1 )2n-ran 

~i(n) = 2 2 - (  . . . . .  )/Z~k =: (~ (n ) ,  ~Z(n), ~ ( n ) )  
k = i2nmn + 1 

We now use Lemma 3.3 to prove (3.6). Let 

[ [ t Z m n ]  --  1 \ 

a ~ ( t , n ) = V a r {  ~ ~Ii(n),) l = 1 , 2 , 3  
X i = O  

Then 

try(t, n )=t2m"[ l  + o(1)3 

It is easy to show that 

[" t2mn ] --  1 

Eo I~i(n)--Eo~i(n)]4<~ O(t2"") 
i = 0  

Hence 

[ t2mn] --  1 

lim ~. as n)Eo I~i(n) -- E0~j(n)[ 4=  0, l =  1, 2, 3 
n ~ o ~  i = 0  

Moreover,  we set 

621 

a]( t, n) = Var Ji( 2 . . . .  
i = O  

As in the derivation of (2.8), we can show that [ the following estimate was 
shown in (2.8) to be true for t =  1] 

[ t2mn] --  1 

2 E o ( J i ( 2  . . . .  ) _ E o J i ( 2  . . . .  ) ) 4  

i = o  

~< t2,,.f12(2 . . . .  ) 0c(2 . . . .  ) 

t2-""cr44(t, n) 

t>~0 (3.6) 
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Using this, we can easily show that 

[t2",] - l Eo(Ji( 2 . . . .  ) -- EoJ~(2 . . . . . .  ))4 
lim ~ a4(t, n) - 0 

Thus we proved that the conditin (3.1) is satisfied. 
As in the proof  of (2.5), we can show that 

Eo IX~,v~(7(t, 2 " ) - Y ( t ,  n))l ~< O(m,,. 2"/2)(Eo [X~,2,ql2) 1/2 

Then by Lemma 3.2 we know that 

,,lim ( 2 - " n - ' / 2 E o (  ['2""]-' , i~=o ' l ( n ) '~ ( t ' n ) ) )  

= limoo(2-"n -'/2EoX~,2, ] �9 (I(t, 2") -- EoI(t, 2"))) = 0 

which proves that the condition (3.2) is satisfied. Therefore, by Lemma 3.3 
we have 

(v 
[tv,,q- l ~: Cn~ , .7(t, n) 

/ - - d i =  0 "~ i ', ! 

tt-~,~,-ff , tl/-~(2 ....... ) 2,-,/5 ~1/2(2 ....... )J  

(a) N3+1(0 ' 1), n--* oo 

which proves (3.6), and so the proof  of (3.5) is complete. Similarly, we can 
show that for tl < t2 

J(tz, n) - -7( t l ,  n) 
x(2")(t2) /~(2 . . . .  ) 2 ""/2 ~l/z(2 . . . . .  ) /  X~Z"~(t|), 

(a) (B,,._,I, f in-, ,) ,  n ~ oo (3.7) 

Finally, we prove (3.4). In fact, we only need to show that for any 
0 = t o < t l < t 2 < . . .  < t k < ~ , V k > ~ l ,  

(a) (B,,, fin, 1 ~< l ~< k), n ~ oo 
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To prove this, it suffices to prove that 

( 7 ( t "2" ) - -7 ( t ' - "2" )  l<~l<~k) 
Xt2")(tl) - X(2")(tt- l), 2,/2(log 2,)~/2 u(2") ' 

(d) (Bt_Bo_,, f l , ,_f l t l_l ,  1 <<.l<~k), n ~  oo 

As in the proof  of (2.5), we can show that 

I(t/ ,  2 " ) - I ( t / _ A , 2 "  ) Y(tt, n)-J(t/_,, n) 
Eo 2,,/2(log Z,,)]/Z u(2,, ) ~ - ~ ) [ ? i - u i - 2 ~ , )  ~ 0, n--* oo 

Thus, it suffices to show that 

" "7(t l 'n)--Y(t t - l 'n)  l<~k) 
X 2 ~(t,) - x ( z " ( t , _ ,  ), 2'-~l-~g 2 " - ~  u(--~ '  1 < 

(d), (B,_B, ,_~, f l ,_ f lo_, ,  1 <~l<~k), n ~  r (3.8) 

It is clear that the random vectors 

(X(Z">(t3-X(2")(tl_l),  J( tl, n ) -  J(t t_l ,  n), 1 <~ l <~k) 

are independent. Hence, (3.8) is actually an immediate consequence of 
(3.7). Since the tightness can be easily proved to be true in this case, we get 
the weak convergence (3.3) from (3.8). 

(ii) Here we choose m,  = H 1/2, Vn >1 1, 

~n/log 2 n, d = 4 
~(n ) 5 t n, d~> 5 

and 

~'log n, d = 4 
fl(n) = (1, d~>5 

We define u(n) as in the proof  of (i). Then, by Lemma 3.1(ii) we can show 
that 

lim u(n) = kd 
t l  ~ o o  

for some c o n s t a n t  kd@ (0, 0(3). Thus, by a similar argument as in the proof  
of (i), part (ii) follows. 
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